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Abstract. Nuclear magnetic resonance (NMR) structure modeling usually produces a sparse set
of inter-atomic distances in protein. In order to calculate the three-dimensional structure of protein,
current approaches need to estimate all other “missing” distances to build a full set of distances.
However, the estimation step is costly and prone to introducing errors. In this report, we describe a
geometric build-up algorithm for solving protein structure by using only a sparse set of inter-atomic
distances. Such a sparse set of distances can be obtained by combining NMR data with our knowledge
on certain bond lengths and bond angles. It can also include confident estimations on some “missing”
distances. Our algorithm utilizes a simple geometric relationship between coordinates and distances.
The coordinates for each atom are calculated by using the coordinates of previously determined
atoms and their distances. We have implemented the algorithm and tested it on several proteins. Our
results showed that our algorithm successfully determined the protein structures with sparse sets
of distances. Therefore, our algorithm reduces the need of estimating the “missing” distances and
promises a more efficient approach to NMR structure modeling.

Key words: Molecular distance geometry, Protein structure determination, Numerical linear algebra
and optimization

1. Introduction

Many of the research subjects in biology focus on properties and activities of cells
that are primarily determined by proteins. Proteins are biopolymers made up of
twenty different amino acids, each having an acid group, an amino group, and a
side chain. The order of the amino acids and the properties of their side chains
in a protein determine a three-dimensional structure. The structure specifies the
function of the protein (Branden and Tooze, 1991).

The structure of a protein may be determined experimentally via NMR spectro-
scopy or X-ray crystallography or theoretically through potential energy minimiz-
ation or molecular dynamics simulation (Creighton, 1993). We study a problem



322 Q. DONG AND Z. WU

related to the NMR approach to structure determination. More specifically, we
consider the problem of determining the structure of a protein with a set of dis-
tances between pairs of atoms in the protein. The distances are either obtained
with our knowledge on certain bond lengths and bond angles or estimated through
NMR experiments. Solving protein structure based on the distance data is gen-
erally called molecular distance geometry problem (Crippen and Havel, 1988. A
particular case of molecular distance geometry problem is when exact distances
between all pairs of atoms are given. The problem can then be solved by factorizing
a distance matrix formed by the given distances. More specifically, we can define
a special matrix with the given distances. If the distances are consistent in the
sense that we can indeed find a set of feasible points in three-dimensional space,
the distance matrix must be of rank less than or equal to three. If we can find the
three non-zero eigenvalues of the matrix, we can use the eigenvectors to find the
coordinates of the points (Blumenthal, 1953; Crippen and Havel, 1988). Note that
computing the eigenvalues of an n by n matrix can be done in O(n2) to O(n3)

floating point operations by using the singular value decomposition (Golub and
Van Loan, 1989). So, the molecular distance geometry problem, when all exact
distances are given, can be solved in polynomial time and is a tractable problem.
However in practice, we usually cannot obtain the exact distances between all pairs
of atoms in protein. For example, in NMR experiments, usually only the distances
between certain close-range hydrogen atoms can be measured (Creighton, 1993).
Therefore, the real challenge in NMR structure determination is to solve a mo-
lecular distance geometry problem with only sparse sets of distance data resulted
from NMR experiments in addition to our knowledge on certain bond lengths and
bond angles. Two major heuristic approaches have been used to solve the sparse
distance geometry problem. One approach, represented by the EMBED algorithm
of Crippen and Havel, first estimates the “missing” distances to build a full set
of distances. The problem is then converted to one with all distances and solved
with singular value decomposition as described above followed by necessary error
minimization (Crippen and Havel, 1988; Glunt et al., 1993; Havel, 1995). However,
the estimation step is costly and prone to introducing errors. The other approach
directly solves the problem as a global least-squares problem (Hendrickson, 1991;
Moré and Wu, 1996, 1997, 1999; ). The least-squares function is defined with
respect to only the given distances, for example,

f (x1, . . . , xn) =
∑

(i,j)∈S

[(‖xi − xj‖2 − d2
i,j )]2,

where S is the set of given distances, and di,j the distance between atoms i and j .
Given this f , it is easy to see that a set of coordinates x1, . . . , xn is a solution to the
molecular distance geometry problem if and only if it is the global minimizer of f

with the global minimum equal to zero. However, the global minimizer has been
proved to be difficult to find, even for some simple problem instances (Moré and
Wu, 1997, 1999). In this report, we describe a geometric build-up algorithm for
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Figure 1. An atom determined with its distances to four base atoms.

the molecular distance geometry problem with sparse distance data. The algorithm
does not require recovering the “missing” distances and works with only the sparse
distance data. It utilizes a simple geometric relationship between coordinates and
distances. The coordinates for each atom are calculated by using the coordinates of
previously determined atoms and their distances.

2. The Algorithm for Full Sets of Distances

Our geometric build-up algorithm is based on the same idea for the linear-time
algorithm we have previously reported for solving the molecular distance geometry
problem with full sets of distances. We describe the idea of the algorithm briefly in
this section. For more details, readers are referred to (Dong and Wu., 2002). Some
related work can also be found in a recent paper in (Huang et al., 2001).

Consider a molecule of n atoms. A simple idea for determining the coordinates
of the atoms with the distances among them is the following. First, if there are four
atoms not in the same plane, the coordinates of the atoms can be calculated easily
by using the distances among the atoms. Then, the four atoms, we call the base
atoms, can be used to determine uniquely the coordinates of any of the remaining
atoms in the molecule, given the distances among the base atoms and the atom to
be determined (see Figure 1). For each of the atoms, the algorithm determines the
coordinates for it by solving a small and simple system of algebraic equations. The
amount of computation is proportional to the number of the atoms in the molecule.

3. The Algorithm for Sparse Sets of Distances

For problems with full sets of distances, the same set of base atoms can be used
repeatedly to fix all other atoms in the molecule, and the structure of the molecule
can be determined in n computational steps, where n is the number of atoms in
the molecule. However, for problems with sparse sets of distances, a set of base
atoms may not be used to fix all other atoms since some distances from the base
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Figure 2. A set of atoms with sparse distances determined with different bases.

atoms to the atom to be determined may not be provided. Thus we cannot directly
use the previous algorithm for problems with sparse sets of distances. However, we
can still use the same idea to determine the coordinates for an atom with any four
determined ones whenever the distances among the atoms are available. More spe-
cifically, given a sparse set of distances, assume that we can first fix the coordinates
for at least four atoms. We can then examine each of the remaining unfixed atoms
to find four fixed atoms such that the distances between any of the four fixed atoms
and the unfixed one are known. If such four atoms are found, the coordinates for the
unfixed atom can immediately be determined. The algorithm may continue until all
the atoms are fixed. Figure 2 illustrates how such an algorithm can be used to find
the coordinates of seven atoms with a sparse set of distances given among them.
Atoms 1, 2, 3 and 4 can be used as the first set of base atoms. The coordinates of 1,
2, 3 and 4 can be calculated using the distances among them. Then, the coordinates
of atoms 5 and 6 can be calculated with their distances to the base atoms by using
our algorithm. Now atoms 1, 3, 5 and 6 can be used as a new set of base atoms to
calculate the coordinates of atom 7 as long as atoms 1, 3, 5, and 6 are not in the
same plane. Obviously, such a construction can be extended to any given number
of atoms with a sparse set of distances among them.

An outline of our algorithm for sparse sets of distances is given in the diagram in
Figure 3. Note that the algorithm does not guarantee to solve any distance geometry
problem. In every loop, the algorithm requires that at least one of the unfixed atoms
can be determined by using four of the fixed atoms. Otherwise the algorithm will
stop and report only a partial structure, which is composed of the coordinates of
the atoms being fixed so far. For this reason, the while loop in the algorithm will be
executed at most n times. The for loop in the algorithm examines all unfixed atoms
and takes at most n steps. Then for each unfixed atom, the algorithm searches for
four fixed atoms to form a set of base atoms. This will need at most n steps since
there are at most n fixed atoms. Here for each of the fixed atoms, the algorithm
basically needs to find out if there is a distance from the fixed atom to the unfixed
one. This will require at most n steps of calculations. Once four base atoms are
found, the coordinates for the unfixed atom can be determined by using our ba-
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Figure 3. A geometric build-up algorithm for problems with sparse distances.

sic distance-coordinate build-up algorithm. Together, the algorithm requires O(n4)

steps of calculations to complete. Further reduction in the total computation steps
is possible but depends on specific implementation.

4. Computational Issues

4.1. FIXING THE FOUR BASE ATOMS

We can use any atom, i.e., the first atom in the molecule, as the first base atom. Let
u1, v1, and w1 be the three coordinates for the atom. We can set u1 = 0, v1 = 0,
and w1 = 0. Then the second atom in the molecule can be used as the second
base atom and be fixed on one of the axes, i.e., the first axis, by setting u2 = d1,2,
v2 = 0, and w2 = 0, where d1,2 is the distance between atoms 1 and 2. The third
base atom is put into one of the planes formed by the axes, i.e., the one by the first
and second axes. Therefore, the third coordinate for the atom w3 is set to zero. The
other two coordinates are determined by using the distances of the atom to the first
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two atoms:

u2
3 + v2

3 = d2
3,1

(u3 − u2)
2 + v2

3 = d2
3,2,

and therefore,

u3 = (d2
3,1 − d2

3,2 + u2
2)/(2u2)

v3 = ±(d2
3,1 − u2

3)
1/2.

Here, v3 cannot be zero in order to avoid being on the same line determined by the
first two atoms. Therefore, the third base atom can be selected among the remaining
atoms if its calculated v3 is nonzero. Since v3 can be either positive or negative
without affecting the final structure, we always choose v3 to be positive. Finally,
the fourth base atom can be fixed by solving the following equations.

u2
4 + v2

4 + w2
4 = d2

4,1

(u4 − u2)
2 + v2

4 + w2
4 = d2

4,2

(u4 − u3)
2 + (v4 − v3)

2 + w2
4 = d2

4,3,

and

u4 = (d2
4,1 − d2

4,2 + u2
2)/(2u2)

v4 = (d2
4,2 − d2

4,3 − (u4 − u2)
2 + (u4 − u3)

2 + v2
3)/(2v3)

w4 = ±(d2
4,1 − u2

4 − v2
4)

1/2.

Obviously, w4 cannot be zero in order to avoid being in the same plane determ-
ined by the first three atoms. Therefore, the fourth base atom can be selected among
the remaining atoms if its calculated w4 is nonzero. Here w4 can either be positive
or negative, corresponding to two mirror symmetric structures. We can compute
one of the structures with w4 positive. The second one can be obtained by simply
making all wi , i = 4, to have an opposite sign.

4.2. DETERMINING THE REMAINING ATOMS

Let us assume that we have found the coordinates for the four base atoms. Let the
coordinates be denoted by

x1 = (u1, v1, w1)
T

x2 = (u2, v2, w2)
T

x3 = (u3, v3, w3)
T

x4 = (u4, v4, w4)
T .
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Suppose that we want to determine the coordinates xi = (ui, vi, wi)
T for some

atom i and we know the distances among atom i and the four base atoms. Let
the distances be denoted by di,j for j = 1, 2, 3, 4. We then have the following
equations.

‖xi − x1‖ = di,1

‖xi − x2‖ = di,2

‖xi − x3‖ = di,3

‖xi − x4‖ = di,4,

which are equivalent to

‖xi − x1‖2 = ‖xi‖2 − 2xT
i x1 + ‖x1‖2 = d2

i,1

‖xi − x2‖2 = ‖xi‖2 − 2xT
i x2 + ‖x2‖2 = d2

i,2

‖xi − x3‖2 = ‖xi‖2 − 2xT
i x3 + ‖x3‖2 = d2

i,3

‖xi − x4‖2 = ‖xi‖2 − 2xT
i x4 + ‖x4‖2 = d2

i,4,

and

‖xi‖2 − 2uiu1 − 2viv1 − 2wiw1 + ‖x1‖2 = d2
i,1

‖xi‖2 − 2uiu2 − 2viv2 − 2wiw2 + ‖x2‖2 = d2
i,2

‖xi‖2 − 2uiu3 − 2viv3 − 2wiw3 + ‖x3‖2 = d2
i,3

‖xi‖2 − 2uiu4 − 2viv4 − 2wiw4 + ‖x4‖2 = d2
i,4.

Twelve different systems of linear equations can be derived from the above four
non-linear equations by subtracting them each other. For example, we can subtract
the first equation from the rest ones to obtain

2ui(u1−u2)+2vi(v1−v2)+2wi(w1−w2) = (‖x1‖2−‖x2‖2)−(d2
i,1−d2

i,2)

2ui(u1−u3)+2vi(v1−v3)+2wi(w1−w3) = (‖x1‖2−‖x3‖2)−(d2
i,1−d2

i,3)

2ui(u1− u4)+2vi(v1−v4)+2wi(w1−w4) = (‖x1‖2−‖x4‖2)−(d2
i,1−d2

i,4).

Mathematically, it’s easy to solve the three unknowns ui , vi , and wi by solving
the above equations. However, there are 12 different systems of linear equations
that can be derived from the non-linear equations. Even though they are equivalent
mathematically, they can be quite different computationally. In matrix form, the
equations are equivalent to

Axi = bi,

where

A = 2




u1 − u2 v1 − v2 w1 − w2

u1 − u3 v1 − v3 w1 − w3

u1 − u4 v1 − v4 w1 − w4


 ,
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and

bi =



(‖x1‖2 − ‖x2‖2) − (d2
i,1 − d2

i,2)

(‖x1‖2 − ‖x3‖2) − (d2
i,1 − d2

i,3)

(‖x1‖2 − ‖x4‖2) − (d2
i,1 − d2

i,4)


 .

The system of equations has a unique solution if the coefficient matrix A is non-
singular, or in other words the determinant of A is not equal to zero. Furthermore,
for numerical stability, it will be better if the determinant of A is not even close to
zero. Geometrically, it means that the volume of the simplex formed by the three
column vectors of A must not be equal to or close to zero. For this reason, we
choose among twelve possible ones a system that has the biggest absolute value of
the determinant of A and then use it to determine the coordinates ui , vi , and wi .

4.3. SOLVING THE LINEAR EQUATIONS

As we have described above, to determine the coordinates for an atom by using a
set of base atoms, a system of linear equations needs to be solved. To solve such a
system of equations, a special procedure similar to Gauss elimination can be used
as can be illustrated in the following example.

Given three linear equations with three unknown, u, v, and w,

a1u + b1v + c1w = f1 (1)

a2u + b2v + c2w = f2 (2)

a3u + b3v + c3w = f3, (3)

if a1 is not smaller than a2 and a3 and is not equal to zero, then u can be eliminated:

(1) ∗ (a2/a1)−(2) : (b1 ∗ a2/a1−b2)v+(c1 ∗ a2/a1−c2)w = f1 ∗ a2/a1

(1) ∗ (a3/a1)−(3) : (b1 ∗ a3/a1−b3)v+(c1 ∗ a3/a1−c3)w = f1 ∗ a3/a1.

Let the coefficients in the equations be denoted by Bi , Ci , and Fi , i = 1, 2. The
equations can be written in the following form with two unknowns (v, w):

B1v + C1w = F1 (4)

B2v + C2w = F2. (5)

Here, if B1 is not smaller than B2 and is not equal to zero, then v can be eliminated:

(4) ∗ B2/B1 − (5) : (C1 ∗ B2/B1 − C2)w = F1 ∗ B2/B1 − F2.

Thus, w can be easily solved. By substituting w into (4), v = (F1 − C1w)/B1, and
v and w into (1), u = (f1 − b1v − c1w)/a1. The system of linear equations is then
solved.
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Table 1. Results for different proteins at different cutoff distances

Proteins No. of atoms 8 Å 10 Å 12 Å 14 Å 16 Å

1PTQ: 402 2.84e-08 2.03e-10 5.65e-12 5.65e-12 4.31e-12

1HOE: 558 9.38e-06 1.28e-09 5.69e-08 2.07e-09 1.49e-11

1LFB: 641 ——– 1.28e-07 1.33e-08 5.22e-09 1.43e-08

1F39A: 767 2.28e-06 4.11e-07 3.61e-08 8.08e-10 3.05e-09

1PHT: 814 4.39e-05 5.25e-07 6.69e-08 5.38e-09 1.38e-08

1POA: 914 ——– 3.13e-07 7.30e-08 2.18e-09 1.31e-11

1AX8: 1003 1.45e-06 2.63e-06 6.00e-08 1.34e-07 1.51e-08

1RGS: 2015 ——– 5.64e-05 4.52e-07 1.07e-06 1.10e-06

1BPM: 3672 ——– 2.99e-04 1.82e-04 1.45e-06 1.74e-06

1HMV: 4200 ——– 1.11e-04 3.49e-04 1.94e-04 7.86e-06

5. Computational Results

We have implemented our algorithm in C++ and tested it with a set of model
problems on a UNIX workstation. The distance data was generated by using the
structural data for a set of proteins downloaded from the Protein Data Bank (PDB)
(Berman et al., 2000). For each of the proteins, the distances were calculated with
certain cutoff value so that only a subset of distances were obtained. Table 1 shows
the results of using our algorithm to find the coordinates for a set of proteins given
their generated distances. Note that we measured the distance matrix error (DME)
between the original and calculated structures. The DME values are listed in the
table for different proteins with different sets of distances each obtained by using
a specific cutoff distance. From this table, we can see that our algorithm solved
the model problems reasonably well. The problem sizes ranged from about four
hundreds to four thousands of atoms. The distances were cut off at 8, 10, 12, 14,
and 16 Å. Usually, the distance data obtained from NMR experiments are less than
or equal to 5 Å. We used longer distances not only because that we wanted to
see how the algorithm performs for a spectra of cutoff distances, but also because
that the PDB files we used do not include hydrogen atoms which otherwise would
add more short-range distances. Because of the absence of the hydrogen atoms,
only partial structures were obtained for some of the proteins with an 8 Å cutoff
distance. However, complete structures were obtained for all of the proteins with
increasing the cutoff distance to 10 Å and beyond.

As an example, we give more detailed information for the last test problem,
1HMV, which is related to an important protein called HIV-1 RT. Human immun-
odeficiency virus type (HIV-1) is known to be the etiological agent of the acquired
immunodeficiency syndrome (AIDS). The reverse transcriptase (RT) of HIV-1 is
responsible for converting the viral genome RNA into DNA, which is the key step
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Figure 4. The original (left) and computed (right) structures for the HIV-1 RT p66 protein.

for viral replication. The 66-kDa subunit of the protein, p66, consists of both the
DNA polymerase domain and the RNase H domain (Le Grice et al., 1991; Teles-
nitsky and Goff, 1997). In order to test our algorithm, we have retrieved the X-ray
structural data for p66 (1HMV.pdb) from the PDB. The structural data deposited in
the PDB contains the coordinates of the atoms in the molecule. Using the retrieved
coordinates, we first calculated a full set of distances between all pairs of atoms.
The PDB file for HIV-1 RT p66 subunit contains the coordinates for 4200 atoms.
The distances range from smaller than 2 Åto larger than 90 Å, depending on the
relative positions of the atoms, and they can be put into a 4200 × 4200 matrix.
We then generated subsets of distances by removing large distances with certain
cutoffs. For example, if the cutoff is 10 Å, a subset of distances was obtained which
contained only distances less than 10 Å. We applied our algorithm to different
sets of distances and obtained a structure for the protein based on each set of
distances. We then compared the structures with the original one. Figure 4 shows
the structure we obtained for a set of distances with a 10 Åcutoff. The structures
are displayed by the graphic function, which is implemented by integrating RasMol
(Sayle and Milner-White, 1995) into our program. The original (left) and computed
(right) structures match successfully. Their distance matrix error (DME) is equal
to 1.1e-04.

6. Discussion

The distance data derived from the atomic interaction measured by NMR can
be used to calculate the three-dimensional structure of protein. If the distances
between all pairs of atoms are available, a unique protein structure can then be
computed in polynomial time. Previously, we reported a linear time algorithm
for solving such a problem. Our linear time algorithm was based on a simple
geometric relationship between coordinates and distances. However, usually the
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NMR method can only provide a sparse set of distances among atoms in protein.
Even though we can combine the NMR data with our knowledge on certain bond
lengths and angles, we still cannot obtain all the distances. Heuristic algorithms,
such as the EMBED algorithm, have been developed to estimate the “missing”
distances. Then a full set of distances can be used to compute the protein structure.
Unfortunately, such estimation is usually costly and prone to introduce errors since
some “missing” distances, especially those long distances between atoms spatially
away from each other, may be very hard to derive from available distances. For
example, the EMBED algorithm uses a technique called ‘Bound Smoothing’, in
general with the computational cost of O(n4), to estimate “missing distances”
(Crippen and Havel, 1988). Bound smoothing relies on geometric rules such as
triangular inequalities, which at best can only estimate an upper and lower distance
bounds. It’s hard to derive the ‘exact’ distance from the bounds. Then in order
to find all the “missing distances”, the derived ‘error’ distances are likely used
to estimate other missing distances, propagating errors and making the estimation
unreliable. A better approach would be directly solving the structure by using the
sparse distances. In that case, instead of estimating every “missing” distance, we
can just use reliable sparse distances obtained either from NMR experiments and
our knowledge on certain bond length and bond angles or from some confident
estimations. In this paper, we reported a geometric build-up algorithm for protein
structure determination using only sparse sets of distances. Our algorithm was
based on the same idea in our previously reported linear time algorithm for full-sets
of distances. The difference is that the current algorithm uses a set of base atoms to
build only a partial or local structure of protein. The base is changed if the distance
data does not suffice to fix all the atoms. We implemented and tested our algorithm
for proteins with sparse sets of distances and obtained the protein structures cor-
rectly. An example is given in the report, for which only distances shorter than 10
Åare assumed available. The total number of available distances in this particular
test case is only about 3% of all distances in the molecule, but they were enough to
be used to determine the protein structure correctly as demonstrated in our results.
In our algorithm, the coordinates of unfixed atoms are determined by four distances
from the unfixed atoms to their four neighboring fixed atoms given the condition
that the four neighbors form a good non-planar geometric shape. Once an unfixed
atom is fixed, the distances from this atom to the rest of its neighbors may not
be used any more. Therefore, in practice, not all given distances will be used in
determining a structure. To determine the minimum number of distances required
to solve a structure is probably not very meaningful since the distribution of the
distances is more important than the total number of available distances. Consider
the example we have given in the report. It is possible that some unfixed atoms may
not have enough neighbors while others have more than enough. Then even though
the total number of available distances remains the same, the protein structure will
not be solvable.
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One problem we have encountered in developing our algorithm for sparse sets
of distances was the error accumulation in the geometric build-up procedure. For
example, consider the structure shown in Figure 2. If the calculated coordinates for
atoms 5 and 6 had some small errors, the coordinates for atom 7 may get the errors
accumulated since they depend on atoms 5 and 6. So on and so forth, the errors will
get aggregated and the accuracy of the structure will be lost. In fact, we have seen in
our test cases that small proteins with several hundreds of atoms were not affected
much by such errors, but big proteins with more than one thousand atoms were
affected severely. This problem can be resolved by choosing a proper system of
linear equations for fixing the coordinates and by using a stable numerical method
for solving the system, as we have discussed in the report. However, a complete
analysis on these issues may need to be done in order to make the algorithm more
robust for all practical applications. Overall, we have developed a new algorithm
for the molecular distance geometry problem with sparse sets of distances. The
algorithm does not require estimating all “missing” distances and is built upon
simple mathematical and geometrical calculations. It could also be extended to
more general and practical classes of molecular distance geometry problems when
only lower and upper bounds on the distances are given. In those cases, the co-
ordinates for each of the atoms can be determined as a set of intervals that specify a
region for the location of the atom. Mathematically, this can be achieved by solving
a system of interval equations. Work along this direction is being underway and
will be reported elsewhere.
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